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Abstract: Face recognition has numerous applications in various identification and authentication system, but the accuracy of 
face recognition decreases in presence of large facial expression, occlusion and pose variations. This paper illustrates the use 
of scale invariant feature transform (SIFT) on 3D meshes to mode facial deformation caused by expression, occlusion and 
variation in poses. Here we used meshSIFT algorithm for feature extraction and sparse representation classifier for feature 
matching. Given a 3D face scan, its descriptors are extracted at first and then its identity can be determined by using sparse 
representation classifier. The proposed 3D face recognition system is robust to challenges such as large facial expressions 
(especially those with open mouths), large pose variations, missing parts, and partial occlusions due to glasses, hair, and so 
on. Our results is verified on Bosphorus Database, and I got approximate 92.46%accuracy on Bosphorus dataset. 
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I INTRODUCTION
         Face is one of the popular biometric identities of 
person. Each person in the world has different appearance. 
Due to these variations in face, face is the most widely 
accepted biometric modality. Our face is used in identity 
proof like passport, visa, license, voting card, ID, PAN card, 
Aadhar card etc. Along with that automated human face 
recognition has number of applications in variety of fields 
including automated secured access to ATM machines and 
buildings, automatic surveillance, forensic analysis, fast 
retrieval of records from databases in police departments, 
automatic identification of patients in hospitals, checking for 
fraud or identity theft, and human-computer interaction. 
     Due to this fact from last few decades a face recognition 
system becoming very useful in a variety of applications. 
There are number of biometric systems exists, such as 
fingerprints, gait, DNA, hand geometry, retina scan, ear, 
teeth etc. While some of these biometric recognition 
systems, such as fingerprints and iris, have already reached 
very high level of accuracy, but they have a limited use in 
non-cooperative scenarios. On the other hand, as face 
recognition is convenient but has not reached the desired 
levels of accuracy. Over the past three decades, the 
techniques for face recognition have received a growing 
attention within the computer vision community.  

  From last two decade most of the research has directed 
their attention towards developing reliable automatic face 
recognition systems that use two dimensional (2D) facial 
images. Commercial systems are also now available for 2D 
face recognition. But, two dimensional face recognition 
systems are inadequate for robust face recognition as 2D 
color imaging has some disadvantages like nuisance 
variables, such as illumination and small pose changes, 
have a relatively greater influence on the observations. 
Three dimensional facial images have some advantages 
over 2D facial images. As 3D image can be rotated so it is 
possible easily correct pose by rigid rotations in 3D space. 
Also images acquired using 3D laser range finders are 
invariant to illumination conditions during image 
acquisition.  3 dimensional facial images can also provide 
structural information about the face (e.g., surface 
curvature and geodesic distances), which cannot be 
obtained from a single 2D image. As more features can be 
made available by using 3D scan, it is possible to develop 
robust 3D face recognition system. 

      However, 3D scans often suffer from the problem of 
missing parts due to self-occlusions or external occlusions 
or some imperfections in the scanning technology. 
Additionally, variations in face scans due to changes in 
facial expressions can also degrade face recognition 
performance. To be useful in real-world applications, a 3D 
face recognition approach should be able to handle these 
challenges, i.e., it should recognize people despite large 
facial expression, occlusion and pose variations [1]. 

II. LITERATURE SURVEY 
      In this section we have listed various existing 
approaches for 3D face recognition that I studied to carry 
out this research. 
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      Bronstein [2] use changes in surface distances with the 
Euclidean distances between corresponding points on a 
canonical face surface as a features.. To handle the open 
mouth problem, they first detect and remove the lip region, 
and then compute the surface distance in the presence of a 
hole corresponding to the removed part. The assumption of 
preservation of surface distances under facial expressions 
motivates several authors to define distance-based features 
for facial recognition. 
 
       Samir [2] use the level curves of the surface distance 
function (from the tip of the nose) as features for face 
recognition. Since an open mouth affects the shape of some 
level curves, this method is not able to handle the problem 
of missing data due to occlusion or pose variations. 
 
      Bronstein AM [4] where the study local geometric 
attributes under this parameterization. To deal with the 
open mouth problem, they modify the parameterization by 
disconnecting the top and bottom lips. The main limitation 
of this approach is the need for detecting the lips. 
 
      Lee [5] use ratios of distances and angles between eight 
fiducial points, followed by an SVM classifier. 
 
      Gupta [6] use Euclidean/geodesic distances between 
anthropometric fiducial points in conjunction with linear 
classifiers. As stated earlier, the problem of automated 
detection of fiducial points is nontrivial and hinders 
automation of these methods. This paper presented a 
systematic procedure for selecting facial fiducial points 
associated with diverse structural characteristics of a human 
face. 

      Faltemier et al. [7] use 38 face regions that densely cover 
the face, and fuse scores and decisions after performing ICP 
on each region. 

      Gordon [8] argues that curvature descriptors have the 
potential for higher accuracy in describing surface features 
and are better suited to describing the properties of faces in 
areas such as the cheeks, forehead, and chin. These 
descriptors are also invariant to viewing angles. 

      McKeon and Russ et al. [9] use a region ensemble 
approach that is based on Fisherfaces, i.e., face 
representations are learned using Fisher’s discriminate 
analysis. This investigation is conducted using 3D 
Fisherfaces and demonstrates that region ensembles 
improve the ability of the Fisherface approach to create 
discriminating features, even for untrained subject samples. 
In fact, comparable performance can be achieved using 
significantly fewer training subjects. 

      Kakadiaris [10] utilize an annotated face model to study 
geometrical variability across faces. The annotated face 
model is deformed elastically to fit each face, thus matching 
different anatomical areas such as the nose, eyes, and 
mouth. 

      Queirolo [11] use surface interpenetration measure as a 
similarity measure to match two face images. The 

authentication score is obtained by combining the SIM 
values corresponding to the matching of four different face 
regions: circular and elliptical areas around the nose, 
forehead, and the entire face region. 

 
     Alyuz [12] proposed a new 3D face registration and 
recognition method based on local facial regions that is able 
to provide better accuracy in the presence of expression 
variations and facial occlusions. Proposed fast and flexible 
alignment method uses average regional models (ARMs), 
where local correspondences are inferred by the iterative 
closest point (ICP) algorithm. Dissimilarity scores obtained 
from local regional matchers are fused to robustly identify 
probe subjects. 

     Berretti [13] used surface distances to extract equal-width 
iso-geodesic facial stripes, which in turn, were used as 
nodes in a graph-based recognition algorithm. However, 
this  approach are not able to deal with the problems caused 
by missing data or occlusions, since under these cases the 
shape of the level curves will definitely be affected. The 
approach takes into account geometrical information of the 
3D face and encodes the relevant information into a 
compact representation in the form of a graph. Nodes of the 
graph represent equal width isogeodesic facial stripes. 

      Mahoor and Abdel-Mottaleb [14], represent each range 
image by ridge lines on the 3D surface of the face using a 3D 
binary image, namely ridge image, which is the locus of the 
points which have principal curvatures grater than a 
threshold. With respect to the matching strategy, they also 
resorted to ICP.  The limitation of [40] lies in that it can only 
deal With frontal or near-frontal range scans. 

      Drira [15], represent facial surfaces by radial curves 
emanating from the nose tips and use elastic shape analysis 
of those curves to develop a Riemannian framework for 
analyzing shapes of full facial surfaces. 

      Jain [16] used the ICP algorithm to align 3D meshes 
containing face geometry. Their algorithm is based on four 
main steps: feature point detection in the probe images, 
rough alignment of probe to gallery by moving the probe 
centroid to match, iterative adjustment based on the closest 
point matching (ICP), and using known points (i.e. the eyes, 
tip of the nose and the mouth) to verify the match. 

      Chang [17] use multiple overlapping nose regions and 
obtain increased performance relative to using one whole-
frontal-face region. These regions include a nose circle, nose 
ellipse, and a region composed of just the nose itself. This 
method uses the ICP algorithm to perform image matching. 

      Passalis [18] use automatic landmarking to estimate the 
pose and to detect occluded areas. The facial symmetry is 
used to overcome the challenges of missing data here. 

      Lu and Jain. [19] use manual landmarks to develop a 
thin-plate-spline-based matching of facial surfaces. A strong 
limitation of this approach is that the extraction of fiducial 
landmarks needed during learning is either manual or semi-
automated 
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IV. PROPOSED SYSTEM 
Our approach is based on the meshSIFT algorithm 

[21] which is an extension of Scale Invariant Feature 
Transform (SIFT) proposed by David Lowe [20]. and is able 
to perform robust 3D face recognition in presence of large 
facial expression, occlusion and pose variations. The mesh- 
SIFT is an alignment free approach means it does not 
require pre alignment between two face scan as in 
approaches presented in literature. It can extracts features, 
ranging from fine details to coarse characteristic structures, 
in a shape-based scale space representation of the surface. 
The idea behind a scale space representation is to separate 
the structures in the surface according to the scale of the 
structure. This assumes that new structures must not be 
created from a fine to any coarser scale.  

The overall pipeline of proposed system is depicted in fig 1. 
In our approach, firstly for each 3D face scan n 

multiple keypoints are detected by using scale space 
extrema and then for each keypoint its local descriptor is 
extracted from histogram of its canonical orientation. The 
set of local descriptors of all keypoints of each scan is used 
as a representation of f. The gallery dictionary is created by 
concatenating all the local descriptors extracted from gallery 
samples. Given a probe face scan, its features are extracted 
first and then these features are matched with gallery scan 
using multi-task sparse classifier.  
 
 
 

 
Fig 1: Overall pipeline of proposed system 

 
V. FEATURE EXTRACTION USING meshSIFT 
 

meshSIFT is efficient Method to extract and 
describe distinctive image features  that are invariant to 
image scale and rotation. It is robust against change of 
viewpoint, noise and illumination change. 

The basic steps of scale invariant feature transforms 
for 3D meshes (meshSIFT) are: 

1. Keypoint localization   
2. Orientation assignment 
3. Keypoint descriptor 
 

A. Keypoint localization 

      This is the stage where the interest points, which are 
called keypoints in the SIFT framework, are detected. For 
this, the image is convolved with Gaussian filters at 
different scales, and then the difference of successive 
Gaussian-blurred images is taken. Keypoints are then taken 
as maxima/minima of the Difference of Gaussians (DoG) 
that occur at multiple scales. 
 
      The mesh-SIFT algorithm starts from a surface mesh M= 
(V, E, T), consisting of a collection of vertices V = {v1 . . . 
v|V|} connected by edges E and a set of simplices T = {t1, . . 
. , t|T |} covering the surface such that T = ∪ti, ti∩ tj = Ø  for 
i = j. Let N be a neighbourhood system defined on V, where 
Ni = {vj ∈ V| (vi , v j ) ∈ E} denotes the set of neighbourhood. 
  To detect The keypoint, a scale space is constructed 
containing smoothed versions of the input mesh Ms, 
expressed as 

                                 �
Ms = 0

�
s

Gs ⊗Melse
                                       (1)                                           

Where Ms is the original mesh and 
�

sGs the approximated 

Gaussian filter with scale ss (standard deviation). These 

scales ss  vary exponentially as 
.

02
s
k

ss s=  with k and 

ss  parameters of the meshSIFT algorithm. 
      The Gaussian filter for meshes is approximated as sub- 
sequent convolutions of the mesh with a binomial filter. 
This binomial filter moves each vertex The Gaussian filter 
for meshes is approximated as sub- sequent convolutions of 
the mesh with a binomial filter. This binomial filter moves 
each vertex vi towards Vi  towards 
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Since the number of convolutions is discrete, ss is 
approximated as 

                              

� 02.. .2
3

s
k

s e ss =

                      (3) 
to approximate as close as possible the desired exponential 

behavior, with e   the average edge length and s = 0 . . . n 
scales + 2. 
      Next, for the detection of salient points in the scale space, 
the mean curvature H is computed (using [20]) for each 
vertex i and at each scale s in the scale space, 
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 the maximal and minimal curvature in 
vertex i at scale s). Note that also other functions can be 
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defined on the mesh, such as the Gaussian curvature K, the 

shape index S (5) or the curvedness 
22C H k= −  The mean 

curvature, however, appeared to provide the most stable 
keypoints for 3D face data. Note also that the mesh itself is 
smoothed and not the function on the mesh. As such, 
meshSIFT better describes the shape’s geometry. It is, 
however, not completely intrinsic anymore (and therefore, 
not completely invariant for local isometric deformations). 
Differences between subsequent scales are computed, 

1s s s
i i idH H H+= −  

and extrema (minima and maxima) in this scale space are 
selected as local feature locations. This means that each 

vertex with a higher (or lower) value of 
s
idH than all of its 

neighbours on the same scale as well as on the upper and 

lower scale is selected as keypoint. Finally, the scale ss   at 
which this extremum is obtained is assigned to each key 
point. 
 
B. Orientation Assignment 

In order to obtain an orientation-invariant 
descriptor, each keypoint is assigned a canonical 
orientation. It allows, together with the normal to the 
surface at the keypoint, to construct a local reference frame 
in which the vertices of the neighbourhood can be expressed 
independent of the (facial) pose. By expressing the 

neighbourhood size as a 9 ss function of the scale ss , we 
ensure a scale invariant descriptor as well. Only vertices 

within a spherical region with radius 9 ss around each 
keypoint are considered. First, for each vertex within this 
(neighbourhood) region, the normal vector is computed and 
the geodesic distance to the respective keypoint is 
determined based on the fast marching algorithm for 
triangulated domains. Next, all calculated normal vectors in 
the neighbourhood are projected onto the tangent plane to 
the mesh containing the keypoint. These projected normal 
vectors are gathered in a weighted histogram comprising 
360 bins (thus covering 360 degrees with a bin width of 1 
degree). Each histogram entry is Gaussian weighted with its 
geodesic distance to the key- point, with a bandwidth 

proportional to the assigned scale(σ =4.5 ss )The resulting 
histogram is smoothed by convolving it three times with a 
Gaussian filter (17 bins,σ = 17) for a more robust 
localization of the canonical orientation. Finally, the highest 
peak in the histogram and every peak above 80% of this 
highest peak value are selected as canonical orientations. By 
fitting a quadratic function to the histogram using the 
neighbouring bins of a peak, the canonical orientation is 
calculated to sub-bin precision. If more than one canonical 
orientation exists for a keypoint, this result in multiple 
keypoints, each as- signed one of the canonical orientations. 
Intuitively, the canonical orientation can be seen as the 
direction in which the surface bends the most 
. 
C. Feature Description 
      The feature descriptor summarizes the local 
neighbourhood around a keypoint. Therefore, it provides 

for each keypoint (with assigned scale and canonical 
orientation) a feature vector consisting of concatenated 
histograms. Each of these histograms is calculated over one 
of the nine small circular regions, defined with respect to 
the canonical orientation as shown in figure 1. The regions 

each have a geodesic radius of 3.75 ss  and their centres are 

located at a geodesic distance of 4.5 ss  (regions 2,4,6 and 8) 

or 4.5√2 ss (regions 3,5,7 and 9) respectively, to the 

keypoint. In each region two histograms 
�

sp and 
�pθ  with 8 

bins each are computed. The first histogram contains the 
shape index, which is expressed for vertex i as 
 

                      

,1 ,21

,1 ,2

2 tan i i
i

i i

k k
S

k kπ
−  +

=   −                           (5) 
    

with ki,1 the maximum and ki,2 the minimum curvature. 
The second contains the slant angles, which are defined as 
the angle between every projected normal and the canonical 
orientation. First, each entry (the shape index or slant angle 
of a vertex) for both histograms is Gaussian weighted with 
the geodesic distance to the key point (large circle in figure 

2, σ = 4.5 ss ) and with the geodesic distance to the center 

of the region (small circles in figure1,σ =4.5 ss ). Moreover, 
the entries of the shape index histogram are weighted with 
the curvedness. 
 

 
Fig:2: Location and order of the region w.r.t the 
canonical orientation. 

used for the construction of the feature vector.(
22C H k= −

) and the entries of the slant angle histogram are weighted 
with the tilted angle, i.e. the angle between the normal in 
the considered vertex and the normal in the keypoint. Next, 
every histogram is normalized and clipped to 1/√8 reducing 
the influence of large histogram values. Finally, the 
histograms are concatenated in a single feature vector

� � � �,1, ,1......... ,9, ,9
T

f pS p pS pi θ θ =   . A feature descriptor is 
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computed for each keypoint, resulting in a set of feature 
vectors per (face) surface F = {f1, f2, . . . fn}. 
 
VI. CREATING GALLERY  

To create gallery or gallery dictionary, for each 
sample scan in the gallery, first its local descriptors are 
computed by meshSIFT. Secondly these computed local 
descriptors for each scan are concatenated each other, this 
forms the gallery dictionary. 

Given a probe 3D face scan, first the n number of 
keypoints are detected and for each keypoint si its local 
descriptor is computed. To compute features for single scan 
all the local descriptor for all keypoints of that scan are 
concatenated first as follows.  

 
             S= [s1, s2..............sn]                                
 
Consider there are N subjects in gallery and for 

each subject i there are totally ni derived descriptors. 
Usually, these ni descriptors are obtained from multiple 
samples of the subject i For the ith subject, let 

 
                     Gi = [Si,1, Si,2, ..., Si ,ni] ∈ Rm×ni                       

(6)    
where m here stands for the descriptor dimension. 

The gallery dictionary G can be simply constructed by 
concatenating these G is as: 
 
                       G = [G1,G2, ...,GN] ∈ Rm×K                        (7) 

   

where K here represents the total number of 
descriptors in the gallery set. G is the complete gallery set. 
Typically, K is very large, making G an over complete 
description space of the N classes. 

 
 
VII.CLASSIFICATION USING SPARSE 
REPRESENTATION CLASSIFIER 
      Given a probe 3D face scan, we at first compute from it a 
set of local descriptors using (6). 
        We consider the problem of automatically recognizing 
human faces from 3D scan with varying expression and 
poses, as well as occlusion. We cast the recognition problem 
as one of classifying among multiple linear regression 
models and use sparse representation classifier that offers 
the key to addressing this problem.  
       With n the number of keypoints detected from this scan. 
Then, the sparse representation problem is formulated as: 

     

�
0

1
arg min || || .

n

i
x i

X x s tS GX
=

= =∑
                       (9) 

 
X = (x1, x2............xn) ∈ RK×n is the sparse coefficient matrix, 
and ||.||0 denotes the l0-norm of a vector. However, the 
solution to this problem is NP-hard.  
     As suggested by the research results of compressed 
sensing [23], sparse signals can be well recovered with a 
high probability via the l1- minimization. Based on a sparse 
representation computed by ‘l1-minimization, we propose a 
general classification algorithm. Therefore, Eq.(.9) can be 
approximated by: 

 

        

�
1

1
arg min || || .

n

i
x i

X x s tS GX
=

= =∑
                          (10)  

Where  ||.||1  represents the l1-norm of the vector. This is 
a multitask problem as both X and S have multiple columns. 
Equivalently, we can solve the following set of n l1-
minimization problems, one for each probe descriptor yi: 
  

      

�
1arg min || || , . , 1, 2....

i
i i i i

x
X x s ts Gx i n= = =

             (11) 
To solve Eq.(3.11), we use the Homotopy  algorithm 

proposed in [24]. Usually, if the identity of the probe face 
scan is covered by the gallery set, the coefficient vectors of 
its local descriptors would be very sparse. 
Inspired by [24, 25], we adopt the following multitask SRC 
to calculate of the n descriptors with respect to each class to 
determine the identity of the input face scan. 

 

�
2

1
( ) || ( ) ||

n

i i n i
i

r S s G x
=

= − ∂∑
                        (12)  

where
�( )n ix∂  is a function which selects only the 

coefficients corresponding to class n. 
   After computing residual, the minimum value of 
residual is selected as the identity of probe scan S. 

           Identity ( ) arg min ( )iS r S=                                  (13) 
 
VIII. EXPERIMENTAL RESULTS 
A. Experiments on Bosphorus 
       The Bosphorus database [26] consists of 4666 facial 
range scans from 105 different subjects. In Bosphorus, facial 
expression variations, pose variations, and occlusions are 
present. The majority of the subjects are aged between 25 
and 35. In our experiment, we chose 3 face scans with 
neutral expressions to form the gallery set, making the 
gallery set have 315 samples. 
      Herewe used 24 images from Gavab database as true 
negative samples. we have tested the results on Bosphorus 
database and achieved approximate 92.45% accuracy on 
same. In our experiment, we chose 3 face scans with neutral 
expressions to form the gallery set, making the gallery set 
have 315 samples. When forming the test set, 6 cases were 
considered. In the first case, the test set included all the 
samples  containing expressions, in the second case the test 
set only occluded samples, third test set included all 
samples containing pose variations, forth test set contains all 
samples with various poses except 90 degree rotated 
samples, fifth test set contains all frontal samples in entire 
database containing that consist of all samples with 
expression, occlusion and samples with various poses, sixth 
test set contains all samples in entire database containing 
that consist of all samples with expression, occlusion and 
samples with various poses. The accuracy of proposed 
approach under all these test sets are listed in Table 1. 

 
TABLE 1: RECOGNITION RATES OF PROPOSED APPROACH ON 

BOSPHORUS DATABASE UNDER DIFFERENT TEST CASES. 
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Sr. 
No 

Approach(Tes
t Set) 

Gallery  
Size 

Test  
Size 

Recogniti
on Rate 

1 Expression(all
) 

315 261
6 

97.32% 

2 Occlusion(all) 315 420 93.33% 
3 Pose 

Variation(all) 
315 131

5 
83.26% 

4 PoseVariation(
except 90 
degree 
rotations) 

315 115
5 

96.62% 

5 Overall 
Database  

315 437
5 

92.45% 

6 Overall 
Database(exce
pt 90 degree 
Rotation) 

315 416
5 

95.76% 

7 Overall 
Database(Fron
tal) 

315 356
7 

98.26% 

 
We have also compared the results of proposed approaches 
with several other approaches. The identification results in 
terms of rank-1 recognition rate are summarized in Table 2.  

 
TABLE 2:   COMPARISON OF RECOGNITION RATES ON BOSPHORUS 
DATABASE. 
Sr.
No 

Approach Galley 
Size 

Test 
Size 

Recognition  
Rate 

1 Proposed 
Approach(all) 

315 4375 92.45% 

2 Proposed 
Approach(front
al) 

315 3567 98.26% 

3 Smeets et 
al.[2](all) 

315 4351 92.99% 

4 Smeets et 
al.[2](frontal) 

315 3543 96.56% 

5 Alyuzet al. 
[27](frontal) 

47 1508 95.3% 

6 ICP 
[28](frontal) 
  

47 1508 72.40% 

7 Dibekliogluet 
al. [29]  
(frontal) 

47 1508 89.2% 

8 Hajatiet al. 
[30](all) 

- - 69.1% 

9 HassenDriraet 
al.[31](all) 

- - 89.25% 

 
 
IX.CONCLUSION  
       In this work, we have presented a framework for 
recognition of 3D faces under large facial expression, 
occlusions and pose variations. We have also presented 
literature survey and system development strategy for 3D 
face recognition designed to handle variations of facial 
expression, pose variations, and occlusions between gallery 
and probe scans. In proposed system given a probe face its 

features are extracted using meshSIFT algorithm as a 
multiple point descriptor and then these features are 
compared with gallery faces using sparse classifier. If the 
probe face belongs to gallery face its identity would be very 
sparse than other faces in the gallery. The proposed system 
is able to properly recognize the faces having large facial 
expression, occlusion and pose variations. 

Using this approach we got 92.45% accuracy on all 
images Bosphorus database and 98.26% accuracy on frontal 
images of same database. Bosphorus is the most prominent 
database of 3D faces, consist of 3D images with large facial 
expression(consist of 6 basic expression such as smile, anger 
etc. and number facial action units), occlusion(such as hair, 
glasses, mouth etc) and pose variations(cross rotation, pitch 
rotation, yaw rotation  with varying degree of rotation 
ranged from 10◦ to 90◦). 
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